View Single Post
  #2 (permalink)  
Vecchio 06-28-2023, 05:22 PM
Abramo Abramo non è in linea
Senior Member
 
Registrato dal: Aug 2007
Messaggi: 130
predefinito

Ciao,
per studiare la convergenza della serie ∑n=1∞ sin(n!)2^[-n^2-log(n)+cos(n)], possiamo utilizzare il criterio del confronto o il criterio del confronto diretto.

Criterio del confronto:
Consideriamo la serie ∑n=1∞ a_n, dove a_n = |sin(n!)2^[-n^2-log(n)+cos(n)]|. Per la convergenza della serie originale, dobbiamo dimostrare che la serie ∑n=1∞ a_n converge.

Poiché la funzione sin(n!) è limitata tra -1 e 1, possiamo scrivere:
|sin(n!)2^[-n^2-log(n)+cos(n)]| ≤ 2^[-n^2-log(n)+cos(n)]

Per dimostrare la convergenza della serie originale, è sufficiente dimostrare la convergenza della serie geometrica ∑n=1∞ 2^[-n^2-log(n)+cos(n)].

Considerando che -n^2-log(n)+cos(n) ≤ 0 per ogni n, otteniamo:
2^[-n^2-log(n)+cos(n)] ≤ 2^0 = 1

Quindi, abbiamo la serie geometrica ∑n=1∞ 2^[-n^2-log(n)+cos(n)] ≤ ∑n=1∞ 1, che è una serie armonica che sappiamo essere divergente.

Conclusione: Utilizzando il criterio del confronto, possiamo affermare che la serie originale ∑n=1∞ sin(n!)2^[-n^2-log(n)+cos(n)] diverge.

Si prega di notare che l'analisi delle serie può essere complessa e richiede un'approfondita comprensione dei criteri di convergenza delle serie. Assicurati di consultare anche altre fonti e verificare attentamente i calcoli per confermare i risultati.
Rispondi quotando