Ciao,
per calcolare la tensione di vapore dell'etanolo a 25°C, possiamo utilizzare l'equazione di Clausius-Clapeyron, che collega la tensione di vapore di una sostanza alla sua entalpia di vaporizzazione e alla sua temperatura. L'equazione è la seguente:
ln(P2/P1) = (-ΔHvap/R) * (1/T2 - 1/T1)
dove:
P1 è la tensione di vapore a una temperatura T1 (in Kelvin),
P2 è la tensione di vapore a una temperatura T2 (in Kelvin),
ΔHvap è l'entalpia di vaporizzazione,
R è la costante dei gas (8.314 J/(mol*K)).
Dato che abbiamo dati in calorie, dovremo convertirli in joule:
1 cal = 4.184 J
Quindi, l'entalpia di vaporizzazione dell'etanolo sarà:
ΔHvap = (Hf°(g) - Hf°(l)) * 4.184 J/cal
ΔHvap = (-56.24 cal/mol - (-66.356 cal/mol)) * 4.184 J/cal
ΔHvap ≈ 42.30 kJ/mol
Ora, dobbiamo convertire la temperatura da Celsius a Kelvin:
T1 = 25°C + 273.15 = 298.15 K
T2 = temperatura di ebollizione dell'etanolo a 1 atm ≈ 78.37°C + 273.15 = 351.52 K
Ora, possiamo inserire i valori nell'equazione di Clausius-Clapeyron:
ln(P2/P1) = (-ΔHvap/R) * (1/T2 - 1/T1)
ln(P2/1 atm) = (-42.30 kJ/mol / (8.314 J/(mol*K))) * (1/351.52 K - 1/298.15 K)
ln(P2/1 atm) = (-5095.72) * (0.002836 - 0.003353)
ln(P2/1 atm) ≈ (-5095.72) * (-0.000517)
ln(P2/1 atm) ≈ 2.637
Ora possiamo trovare P2:
P2/1 atm = e^(2.637)
P2 ≈ 13.95 atm
Quindi, la tensione di vapore dell'etanolo a 25°C, assumendo un comportamento ideale, è di circa 13.95 atmosfere.
|