Vai indietro   Scuola forum (scuo.la) - Forum di discussione per le scuole > Materie di Scuola > Matematica



Top 5 Stats
Latest Posts
Discussione    data, Ora  invio  Risposte  Visite   Forum
Vecchio Qual è il nome di questa molecola di chimica organica?  23-11, 18:32  Abramo  1  1747   Chimica
Vecchio Entrambe le coppie rappresentano strutture limite di risonanza?  22-11, 18:43  Annatar  2  1999   Chimica
Vecchio Dimero D elevato per dieta Reductil da 10mg di sibutramina  09-10, 19:00  Lorenzz  3  22418   Medicina
Vecchio Come modificare valori numerici asse X secondario grafico Excel?  03-09, 16:49  lorenzo  1  12743   Informatica
Vecchio Ha senso bloccare circolazione per polveri sottili solo in città?  02-09, 11:46  Benzene  2  20508   Ecologia
Vecchio Come risolvere sensazione simile all'aria che passa in conchiglia?  01-09, 20:26  Edith  1  12478   Medicina
Vecchio Quali strategie utilizzare nello scrivere un breve racconto?  01-09, 13:30  Benzene  2  19129   Italiano & Letteratura italiana
Vecchio Perché "it is judy" viene tradotto come "stiamo insieme"?  26-08, 21:29  Benzene  2  6709   Inglese
Vecchio Come fare per bilanciare questa reazione di ossidoriduzione?  26-08, 15:41  Benzene  2  6421   Chimica
Vecchio Idrossido di calcio in acqua a neutralizzare acido solforico  26-08, 15:26  Benzene  2  21743   Chimica

Rispondi
 
LinkBack Strumenti della discussione Modalità di visualizzazione
  #1 (permalink)  
Vecchio 06-03-2013, 06:03 PM
Member
 
Registrato dal: Jul 2012
Messaggi: 48
predefinito Come determinare dimensione e base di U, V e intersezione?

Come determinare dimensione e base di U, V e intersezione?


In M2(R) si considerino i sottospazi vettoriali
U=(x1 x2) appartenete ad M2(R) / x1+x3=0]
(x3 x4)
V=(x1 x2) appartenete ad M2(R) / x1-x3=x2=0]
(x3 x4)
Determinare
(a)la dimensione e una base di U e V
(b) la dimensione e una base di U + V
(c) la dimensione e una base di U intersezione V
Rispondi quotando
  #2 (permalink)  
Vecchio 07-13-2023, 09:19 AM
Junior Member
 
Registrato dal: Sep 2007
Messaggi: 14
predefinito

(a) Per determinare la dimensione e una base di U, dobbiamo trovare il numero massimo di vettori linearmente indipendenti in U.

Per U, abbiamo la condizione che x1 + x3 = 0. Possiamo scrivere questa equazione come x1 = -x3. Quindi, il vettore U può essere scritto come:

U = (x1, x2)
(x3, x4)

Sostituendo x1 = -x3, otteniamo:

U = (-x3, x2)
(x3, x4)

Ora possiamo esprimere U come combinazione lineare di due vettori:

U = x2 * (0, 1) + x3 * (-1, 0) + x4 * (0, 0)

Da questa rappresentazione, vediamo che il vettore (0, 0) non contribuisce a creare nuovi vettori linearmente indipendenti. Quindi, una base per U è data dai vettori (0, 1) e (-1, 0).

La dimensione di U è 2 e una possibile base è {(0, 1), (-1, 0)}.

Per V, abbiamo le condizioni x1 - x3 = x2 = 0. Possiamo scrivere V come:

V = (x1, x2)
(x3, x4)

Sostituendo x1 = x3 e x2 = 0, otteniamo:

V = (x3, 0)
(x3, x4)

Possiamo esprimere V come combinazione lineare di due vettori:

V = x3 * (1, 0) + x4 * (0, 1)

Dalla rappresentazione sopra, vediamo che il vettore (1, 0) e il vettore (0, 1) sono linearmente indipendenti. Quindi, una base per V è data dai vettori (1, 0) e (0, 1).

La dimensione di V è 2 e una possibile base è {(1, 0), (0, 1)}.

(b) Per determinare la dimensione e una base di U + V, dobbiamo trovare il numero massimo di vettori linearmente indipendenti nella somma dei due sottospazi.

Poiché U e V sono sottospazi vettoriali, la loro somma U + V sarà ancora un sottospazio vettoriale.

Poiché U e V hanno una dimensione di 2 ciascuno e non sono paralleli, la loro somma U + V avrà una dimensione massima di 2.

Per trovare una base per U + V, possiamo combinare le basi di U e V. Una possibile base per U + V è quindi {(0, 1), (-1, 0), (1, 0), (0, 1)}.

La dimensione di U + V è 2 e una possibile base è {(0, 1), (-1, 0), (1, 0), (0, 1)}.

(c) Per determinare la dimensione e una base di U ∩ V, dobbiamo trovare il numero massimo di vettori linearmente indipendenti che appartengono sia a U che a V.

Per U ∩ V, dobbiamo trovare i vettori (x1, x2) tali che soddisfino entrambe le condizioni x1 + x3 = 0 e x1 - x3 = x2 = 0.

Dalla prima condizione, otteniamo x1 = -x3, e dalla seconda condizione, otteniamo x2 = x3 = 0.

Quindi, i vettori in U ∩ V saranno della forma:

(x1, x2) = (-x3, 0)

Possiamo vedere che in U ∩ V, x2 deve essere uguale a 0 e quindi, x1 deve essere uguale a 0. Pertanto, il vettore (0, 0) è l'unico vettore che appartiene sia a U che a V.

La dimensione di U ∩ V è 0 e una possibile base è {(0, 0)}.




Rispondi quotando
Rispondi


Regole d'invio
Non puoi inserire discussioni
Non puoi inserire repliche
Non puoi inserire allegati
Non puoi modificare i tuoi messaggi

BB code è attivo
Le smilie sono attive
Il codice IMG è attivo
il codice HTML è disattivato
Trackbacks are attivo
Pingbacks are attivo
Refbacks are attivo


Discussioni simili
Discussione Ha iniziato questa discussione Forum Risposte Ultimo messaggio
Come calcolare quantità di sale HEDP sodico (NaHEDP) che si forma mistral78 Chimica 2 01-09-2024 05:45 PM
Come risolvere esercizio di chimica sull'abbondanza isotopica? Chiara256 Chimica 1 06-12-2023 06:41 PM
Come calcolare pOH e pH delle soluzioni di CH3COOH e CH3COONa? rebe Chimica 1 05-22-2023 05:40 PM
Calcolare solubilità del AgCl in soluzione AgNO3 nota la costante ariekazy Chimica 1 03-03-2023 08:53 AM
I risvolti psicologici del non amare di essere contraddetti gio_46 Psicologia 1 12-16-2017 07:21 AM


Tutti gli orari sono GMT +2. Attualmente sono le 05:02 AM.


© Copyright 2008-2022 powered by sitiweb.re - P.IVA 02309010359 - Privacy policy - Cookie policy e impostazioni cookie